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Abstract

Drillstring dynamics is highly non-linear in nature and its model can only be described by a set of non-
linear differential equations. In addition to this complexity, the drillstring dynamics are not linearly
controllable and thus linear control methods are not suitable for suppressing the coupled torsional and
lateral vibrations of a rotating drillstring. In this paper a non-linear dynamic inversion control design
method is used to suppress the lateral and the torsional vibrations of a non-linear drillstring. It was found
that the designed controller is effective in suppressing the torsional vibrations and reducing the lateral
vibrations significantly.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Searching for oil and gas beneath the earth requires the use of rotary drilling systems. In the
drilling process a rotary system creates a borehole by a rock-cutting tool, called a bit. The rotation
of the bit is energized by an electric motor placed on the surface of the earth. The motor drives a
large disc-shaped inertia wheel, called the rotary table, located directly above the borehole. The
centre of the rotary table is connected to a drillstring, mainly consisting of drill pipe segments
coupled with threaded connections. The lower part of the drillstring is connected to the bottom
hole assembly, which consists of drill collars with larger stiffness than the drillpipe and the bit to
crush rocks.
The drillstring, which can be viewed as a long shaft (1–8 km), drives the bit at the bottom of the

borehole. Intuitively such a long rotating system, which is in continuous interaction with the
formation, is subjected to severe vibrations during the drilling process. Mathematical modelling of
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such systems are highly non-linear and fairly complex due to the drillstring dynamics which
involves axial, transverse and torsional modes of coupled motion. Furthermore, impact of the
drillstring with the wellbore and the stick–slip phenomena of the bit adds another dimension of
complexity to the drillstring dynamics. Stick–slip oscillations are examples of limit-cycling
behaviour that often occur in mechanical systems due to hysteresis, backlashes between
contacting parts, dry friction between sliding parts, non-linear damping, geometrical imperfec-
tions, etc. [1].
Non-linear phenomena such as parametric resonance, bit bounce, forward and backward whirl

have all been shown to occur in oil well drillstrings. The excessive vibrations caused by the above
phenomena were observed to cause damage to the drilling system. Such damage is related to large
cyclic stresses, which lead to fatigue, failures and abrasive wear of tubular segments, drill bits and
the borehole wall. As a consequence, the drilling process becomes inefficient and costly. Thus,
vibrations of the drillstrings must be studied and their effects should be controlled to a minimum
for the drilling process to be optimal and economical.
In drilling deep wells, torsional vibration becomes more apparent and detrimental especially

during bit sticking, which induces a high variation in the induced stress levels, thereby reducing
the fatigue life of the drillstring. Several attempts have been made to study the drillstring
vibrations and to overcome the difficulties encountered by field engineers [2–8]. In Ref. [9], a two-
degree-of-freedom mathematical model of a drillstring is used, which only captures the torsional
dynamics, to design an HN controller to minimize the torsional vibration. It has been shown that
the self-excited stick–slip oscillations are reduced by the application of the linear time invariant
HN controller. However, it is not clear how this controller will influence the lateral and axial
dynamics of the drillstring since the model used captures only the linear torsional dynamics. A
similar approach for controlling the torsional vibration of drillstrings is also studied in Ref. [10],
but with a different control strategy called active damping technique.
In a series of papers Yigit and Christoforou [11,7,12–14] developed and studied a non-linear

mathematical model of drillstrings. In Ref. [7], the coupled axial and transverse vibration
problem is studied and in Ref. [12] the coupled torsional and bending vibrations problem
is investigated. Recently, an attempt to minimize the effect of torsional vibrations was
studied [11,14], by designing a linear quadratic regulator (LQR) based on a linearized model.
It was shown that the LQR controller is effective in minimizing the torsional vibration. However,
it turns out [11] that the lateral vibration is not linearly controllable via the motor torque.
This is due to the nature of the coupling terms between the lateral and torsional dynamics which
vanish during linearization. Thus, linear control methods cannot be used to influence lateral and
axial vibrations of drillstings. However, it is important to minimize the lateral vibrations since
they cause excessive bit wear and reduce the penetration rate [15]. Clearly, the linear control
methods cannot influence the lateral vibrations and no previous attempts, according to our
knowledge, were made to use non-linear control methods to tackle the vibration problem of
drillstrings.
The motivation for this paper is the fact that the non-linear treatment of drillstrings problem is

essential since by nature the problem demands the use of a control strategy which is different from
linear control methods. Thus, the controller should be designed and implemented based on a
coupled non-linear model in order to predict the behaviour of the whole system. In this paper, the
use of non-linear control is proposed to suppress the lateral and torsional vibrations of a
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non-linear drillstring model. The proposed control design method is based on dynamic inversion
approach [16,1].

2. Drillstring dynamics model

The equations of motion for coupled torsional and bending dynamics of drillstring can be easily
derived using Newton’s law or Lagrangian dynamics. In this paper the drillstring model presented
in Ref. [11] is used with some modifications. The equations of motion from Ref. [11] can be stated
as

ðm þ mf Þð.r � r’y2Þ þ kð ’fÞr þ chjvj’r

¼ ðm þ mf Þe0½ ’f2 cosðf� yÞ þ .f sinðf� yÞ� � Fr; ð1Þ

ðm þ mf Þðryþ 2’r’yÞ þ chjvjr’y

¼ ðm þ mf Þe0½ ’f2sinðf� yÞ � .f cosðf� yÞ� þ Fy ð2Þ

J .fþ kT ðf� frtÞ þ cv
’fþ chjvj’re0 sinðf� yÞ þ chjvjr’ye0 cosðf� yÞ

¼ �Tð ’fÞ þ Fy½R � e0 cosðf� yÞ� � Fre0 sinðf� yÞ ð3Þ

ðJrt þ n2JmÞ .frt þ kT ðfrt � fÞ þ crt
’frt � nTm ¼ 0; ð4Þ

where r and y are the radial and angular displacement of the geometric centre of the drill collar,
respectively, f is the angle of rotation of the drill collar (bottom of the drillstring) with respect to
its centre of gravity, frt is the angle of rotation of the rotary table (top of the drillstring), v is the
velocity of the geometric centre of the drill collar section, e0 is the eccentricity of the centre of mass
with respect to the geometric centre of the drill collar section, R is the radius of the drill collars,
J;m;mf ; kð ’fÞ; kT ; ch and cv are the equivalent mass moment of inertia, mass, added fluid mass,
transverse stiffness, torsional stiffness, hydrodynamic and viscous damping coefficients. Jrt and Jm

are the inertia of the rotary table and the drive motor, respectively.
In this paper, the dynamics of the drive system are not included and a constant weight on bit

(WOB) is assumed to keep the simulation model within a reasonable complexity. However, these
modelling assumptions can be relaxed without much effect on the controller design approach.
This is also due to the linear coupling of drive motor dynamics with that of the rotary table.
The torque on bit (TOB) is given by

Tð ’fÞ ¼ To tan ’fþ
a1 ’f

ð1þ a2 ’f2Þ

� �
; ð5Þ

where To; a1 and a2 are constants. Assuming one-mode approximation for both the transverse and
torsional bendings, the equivalent system parameters are given by

J ¼ 2rIal2 þ ð1=3ÞrIpl3; ð6Þ

m ¼ rpðd2o � d2i Þl1=8; ð7Þ

mf ¼ prf ðd
2
i þ cad2o Þl1=8; ð8Þ

ARTICLE IN PRESS

S.A. Al-Hiddabi et al. / Journal of Sound and Vibration 265 (2003) 401–415 403



k ’ðfÞ ¼
EIap4

2l31
�

T ’ðfÞp3

2l21
�

Fop2

2l1
; ð9Þ

ch ¼
2

3p
rf Cddol1; ð10Þ

cv ¼
pmf vo3l2

2ðdh � doÞ
; ð11Þ

kT ¼
GIp

l3
; ð12Þ

where r is the density of the drillstring, Ia ¼ pðd4o � d4i Þ=64 is the area moment of inertia for the
collar cross-section, and do and di are the outside and inside diameters of the drill collars,
respectively. The pipe polar moment of inertia is given by IP ¼ pð %d4

o � %d4
i Þ=32; where %do and %di are

the outside and inside diameters of the drill pipe, respectively.
E and G are Young’s and shear modulus of the drillstring materials, rf and mf are the density

and the viscosity of the drilling mud, ca is the added mass coefficient due to the displaced mass of
the mud inside the drillstring, cd is the drag coefficient for the hydrodynamic damping due to the
mud, and dh is the borehole diameter.
The external excitation forces Fr and Fy are the radial and transverse contact forces,

respectively, resulting from impacts of the drill collars with borehole wall. If there is no contact
these forces are zero. There are several methods to represent the contact forces mathematically,
among them is the penalty formulation [17] and momentum balance equation [12]. In this paper a
penalty formulation has been used as described in Ref. [10]:

Fr ¼ �kwðr � c0Þ � cw ’r; ð13Þ

Fy ¼ �SmcFr; ð14Þ

where kw; cw represent the elastic and damping properties of the borehole wall and mc is the
coefficient of friction between the collars and the borehole wall. The clearance c0 is defined as
c0 ¼ 1

2
ðdh � doÞ: The sign-parameter S is given by S ¼ signðr’yþ ðdo=2Þ ’fÞ:

3. Non-linear control design

3.1. General theory of non-linear inverse dynamics

The objective of this Section is to review the techniques that can be applied to develop a non-
linear controller for the drillstring system. The technique is based on the construction of a non-
linear inverse dynamic controller described in Ref. [16], for a system of the form

’x ¼ f ðxÞ þ gðxÞu; ð15Þ

y ¼ hðxÞ; ð16Þ

where f ðxÞ and gðxÞ are vector fields in Rn; u is the input and y is the output.
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The control design process is to find an integer r and a state feedback

u ¼ aðxÞ þ bðxÞv; ð17Þ

where v is a new control variable, a and b are smooth functions defined in the neighbourhood of
some point x0ARn and bðx0Þa0; such that the closed-loop system (15)–(17)

’x ¼ f ðxÞ þ gðxÞðaðxÞ þ bðxÞvÞ; ð18Þ

y ¼ hðxÞ ð19Þ

has the property that the rth order derivative of the output is given by

yr ¼ v; tAG; ð20Þ

where G is an open interval containing t ¼ 0: This problem is termed as (local) input–output
feedback linearization. The point x0 around which the linearization is performed is called the
analysis point.
The above idea can be implemented by successively differentiating the output y ¼ hðxÞ as

y0 ¼ hðxÞ; ð21Þ

y1 ¼ Lf hðxÞ; ð22Þ

^

yr�1 ¼ L
r�1
f hðxÞ; ð23Þ

yr ¼ L
r
f hðxÞ þ LgL

r�1
f hðxÞu; ð24Þ

where Lk
f hðxÞ is called the Lie derivative of Lk�1

f hðxÞ along the vector field f :Note that by choosing
the control u in Eq. (24)

u ¼
v � L

r
f hðxÞ

LgL
r�1
f hðxÞ

: ð25Þ

Provided that the integer r exits and LgL
r�1
f hðxÞa0 in the neighbourhood of x0; Eq. (20) can

easily obtained. In this case the system has a relative degree r in the neighbourhood of x0: The
functions aðxÞ and bðxÞ of Eq. (17) can be obtained directly from Eq. (25) as

aðxÞ ¼ �
L
r
f hðxÞ

LgL
r�1
f hðxÞ

; ð26Þ

bðxÞ ¼
1

LgL
r�1
f hðxÞ

: ð27Þ

From Eq. (20), it can be seen that the inversion-based control law (25) has the capacity in shaping
the output response by simply designing the new control v to get the desired output. However,
since the inversion-based control law is only based on the system’s input–output dynamics, it may
fail to result in a stable closed-loop system. This can happen if the controlled system is non-
minimum phase [16].
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3.2. Application of non-linear inverse dynamics of drillstring dynamics

In this Section the theory of non-linear inverse dynamics is applied to the problem of
controlling the coupled torsional and lateral vibration of the drillstring dynamics described by
Eqs. (1)–(4).
The control input for the drillstring system is the motor torque Tm and accordingly only one

output can be controlled independently.
In Ref. [11] a linear controller was designed to suppress the torsional vibration of drillstrings by

ignoring the lateral dynamics during the design phase. Simulations of the full closed-loop system
indicates that the lateral vibration is minimized due to the suppression of the torsional vibration.
Thus from the above it seems logical to choose the output from the torsional dynamics. The table
speed ’frt and the bit speed ’f both seem to be candidates for being an output for the drillstring
system. In this paper, both outputs are considered independently and controllers are developed
for each case using the non-linear inverse theory. The effect of such a controller on the lateral and
torsional vibration of the drillstring are studied using computer simulations. The main
contribution of this paper is that the controller is designed without ignoring the lateral dynamics.

3.2.1. Table speed controller

In this Section a non-linear controller is designed to track a desired table speed ’frtd
: This can be

achieved by considering the table speed ’frt as an output for system (1)–(4). Note that by
differentiating the output y ¼ ’frt once, the input Tm appears explicitly and this is obvious from
Eq. (4). Thus the relative degree of this output is one. Following the approach described in Section
3, the output is given by

y ¼ hðxÞ ¼ ’frt: ð28Þ

Differentiating (28) once and using Eq. (4) gives

’y ¼ ð�1=ðJrt þ n2JmÞÞ crt
’frt þ kT ðfrt � fÞ

� �
þ ðn=ðJrt þ n2JmÞÞTm: ð29Þ

Eq. (29) is in the form of Eq. (24), where u in this case is Tm: The inverse control according to
Eq. (25) is given by

Tm ¼
ðJrt þ n2JmÞ

n
v þ

1

ðJrt þ n2JmÞ
ðcrt

’frt þ kT ðfrt � fÞÞ
� �

: ð30Þ

Note that in this case the relative degree is one ðr ¼ 1Þ and the input–output relations are linear
and decoupled from the rest of the system. The system in normal form is given by

’y ¼ v: ð31Þ

The new control variable v in Eq. (31) can be designed to achieve any desired table speed ’frtd
:

Choosing v as

v ¼ .frtd
� k1ð ’frt � ’frtd

Þ; ð32Þ

guarantees asymptotic tracking of the desired table speed provided that the constant k1 is positive.
The closed-loop system defined by Eqs. (31) and (32) written in error co-ordinates is given by

’e ¼ �k1e; ð33Þ
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where e ¼ ’frt � ’frtd
: Note that the original control Tm can be calculated from Eq. (30) after

substituting for v from Eq. (32).

3.2.2. Bit speed controller
In this Section a non-linear controller is designed to track a desired bit speed ’fd : This can be

achieved by considering the bit speed ’f as an output for system (1)–(4). Note that by
differentiating the output y ¼ ’f three times, the input Tm will appear explicitly. Thus the relative
degree in this case is three. Following the approach described in Section 3,

y ¼ hðxÞ ¼ ’f ð34Þ

differentiating (34) three times and using Eqs. (1)–(4) gives

.y ¼ f ðxÞ þ gðxÞTm; ð35Þ

where

gðxÞ ¼ �
�
jjvjj½chr’ye0 cosðy� fÞ’r þ ch ’r

2e0 sinðy� fÞ

þ chv2e0 sinðy� fÞ�
e0

J2
kt sinðy� fÞ

þ jjvjj½chr3 ’y2e0 cosðy� fÞ þ chv2re0 cosðy� fÞ

þ ch ’re0 sinðy� fÞr2 ’y�
e0

J2r
kt cosðy� fÞ

� cv � To sec ’f2 þ
a1

ð1þ a2 ’f2Þ
� 2

a1 ’f2a2
ð1þ a2 ’f2Þ

2

� �� �

	
kt

J2
�

ktcrt

JðJrt þ n2JmÞ

�
n

ðJrt þ n2JmÞ
:

Note that f ðxÞ and gðxÞ in Eq. (35) are complex functions of all states, and thus they include
only terms of first derivative and below. The function f ðxÞ contains all the terms that are not part
of the control input coefficient gðxÞ and due to space limitation is not listed explicitly in the paper.
An inverse controller that cancels the non-linear terms in Eq. (35) and tracks a desired bit speed
’fd is designed as follows:

Tm ¼ g�1ðxÞðv � f ðxÞÞ: ð36Þ

The new control input v is given by the following linear feedback law:

v ¼ fd

::::
�k1 f

?
�fd

?
� �

� k2 f
::
�fd

::
� �

� k3 f


�fd



� �

; ð37Þ

where k1; k2 and k3 are constants selected so that the polynomial
s
?
þk1 s

::
þk2 s



þk3 ¼ 0

is Hurwitz.

3.2.3. Remarks on internal stability
The inversion-based control laws (30) and (37) are based on the system’s input–output

dynamics. Therefore, it may fail to guarantee closed-loop stability of the full system. In other
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words, the non-linear inversion-based control design mimics the pole-zero cancellation technique
used in linear control methods. The cancelled modes in this case become unobservable and clearly
if the cancellation involves unstable zeros, the resulting input–output system is stable but the
observable part of the system is unstable. These types of systems are called non-minimum phase
[16] and in general inversion-based control cannot be used on them. In order to check whether a
nonlinear system, for a given output, is non-minimum phase or not; the stability of the
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Fig. 1. System components and the geometry used for modelling.

Table 1

System parameters used in simulation

Drillstring Drilling mud

E ¼ 210 GPa rf ¼ 1500 kg=m3

r ¼ 7850 kg=m3 Cd ¼ 1

do ¼ 0:2286 Ca ¼ 1:7
di ¼ 0:0762 m mf ¼ 0:2 Ns=m2

Eo ¼ 0:0127 m
l1 ¼ 19:81 m Borehole

l2 ¼ 200 m E ¼ 210 Gpa

l3 ¼ 2000 m r ¼ 7850 kg=m3

%do ¼ 0:127 m dh ¼ 0:4286 m
%di ¼ 0:095 m

Weight and torque on bit

P0 ¼ 100 kN; Pf ¼ 50 kN; T0 ¼ 4 kNm

Borehole wall stiffness

kw ¼ 104k cw ¼ 338:4 m mc ¼ 0:3
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zerodynamics should be studied [16]. A simple approach for investigating the stability of the
resulting zerodynamics is to assume that the output variables are equal to the desired variables in
the full system. Then, the stability of the remaining non-linear dynamics is checked using Jacobian
linearization or any other techniques.
In this paper, the stability of the zerodynamics is not investigated theoretically due to the space

limitation but numerical simulations indicate that the states of the zerodynamics are bounded. In
fact the decision to use an inverse-based control design for the drillstring vibration problem is
based on the cited literature which indicate that the lateral dynamics remain bounded if the
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Fig. 2. Table speed control results (desired table speed ¼ 11:6 rad=s).
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torsional vibration is minimized [11,10]. Furthermore, the lateral vibration of drillstrings is
physically constrained by the borehole boundaries and thus it cannot be unbounded.

4. Simulation results and discussion

The model of Fig. 1 has been used to simulate the dynamics of the drillstring with two control
strategies: table speed control and bit speed control. The parameters used for simulations are
shown in Table 1. The desired speed of the rotating table is chosen as 11:6 rad=s ð110 r:p:m:Þ and
15:0 rad=s ð145 r:p:m:Þ which are in the range of the common operating range of oil well drilling.
These frequencies are above the system critical frequencies of torsional and whirling resonances of
1.85 and 6:14 rad=s; respectively [9]. Initially the rotary table and the bit are assumed to have same
rotational speed of 10 rad=s when the bit is off bottom.

4.1. Table speed control

A controller for rotary table speed has been designed using the procedure of Section 3.2.1.
Results of simulations with this controller are presented in Fig. 2, for a desired table speed of
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11:6 rad=s: Fig. 2 shows the trajectory of the drill collar geometric centre, the radial displacement
of the bit (drill collar), time variations of bit and table and the corresponding twist in the
drillstring over the period of the simulation. The corresponding torques of the table and the bit
are shown in Fig. 3.
Though the table speed is maintained at its desired level, the controller is not very effective in

suppressing the motions of the bit and the drill collar in the presence of stick–slip phenomenon as
is evident from the results. The lower effectiveness of the table speed controller may be attributed
to the quite high inertia of the rotary table making it almost an open-loop controller.
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4.2. Bit speed control

The simulations have been repeated with a bit speed controller for a desired bit speed of
11:6 rad=s: The controller has been designed using the procedure of Section 3.2.2. Results are
presented in Figs. 4 and 5 which show the effectiveness of the controller in maintaining both bit
and table speed at the desired level whilst eliminating the stick–slip phenomenon. The lateral
displacement of the drill bit is substantially reduced compared to that with table speed control
Fig. 2. Figs. 6 and 7 show the results with bit speed control with a desired bit speed of 15:0 rad=s:
The effectiveness of the controller is evident from these results. The proposed bit speed controller
is able to control torsional motion of the bit with a performance similar to that of some linear
controllers presented in Ref. [11]. The reduction in lateral motion is due to consideration of the
coupling between the torsional and lateral dynamics in designing the non-linear controller and the
low amplitudes of torsional motion. Analysis of the robustness of the proposed controller has
been studied with respect to some of the system parameters and the operating speed. It has been
found that the controller works well even with deviations from nominal design conditions. The
implementation of the proposed controller is also feasible in digital form with full state
measurement or estimation using an observer. These are subjects of future study.
For implementation of the proposed non-linear what?, the second derivative of the bit speed is

necessary. It is difficult, if not impossible, to measure the second derivative of the bit speed. An
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alternative to direct measurement may be to estimate it using the dynamic model of the drill string
given in Eq. (3). However, the potential issues in implementation taking into account the effects of
modelling errors and uncertainties of parameters need to be studied further.

5. Conclusions

In this paper, a non-linear controller for minimizing torsional and lateral vibrations of a non-
linear drillstring dynamics model is studied. Dynamic inversion is first used to design a controller
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for tracking a desired table speed. It has been found that controlling the table speed gives rise to
large torsional and lateral vibrations of the drillstring.
Dynamics inversion is then used to design a non-linear controller for the bit to track a desired

bit speed. Results showed that this controller completely eliminates the torsional vibrations and
reduces effectively the lateral vibrations. This controller is examined to track two different bit
speeds 11.6 and 15 rad=s: It has been found that the tracking error is zero in both cases.
Numerical simulations showed that this controller is robust to variations of the parameters from
their nominal values.
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